Рассчитать высоту треугольника со сторонами 128, 118 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 118 + 93}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-128)(169.5-118)(169.5-93)}}{118}\normalsize = 89.2259581}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-128)(169.5-118)(169.5-93)}}{128}\normalsize = 82.2551801}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-128)(169.5-118)(169.5-93)}}{93}\normalsize = 113.211431}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 118 и 93 равна 89.2259581
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 118 и 93 равна 82.2551801
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 118 и 93 равна 113.211431
Ссылка на результат
?n1=128&n2=118&n3=93
Найти высоту треугольника со сторонами 132, 96 и 68
Найти высоту треугольника со сторонами 150, 100 и 83
Найти высоту треугольника со сторонами 76, 63 и 34
Найти высоту треугольника со сторонами 118, 106 и 106
Найти высоту треугольника со сторонами 130, 77 и 54
Найти высоту треугольника со сторонами 104, 67 и 56
Найти высоту треугольника со сторонами 150, 100 и 83
Найти высоту треугольника со сторонами 76, 63 и 34
Найти высоту треугольника со сторонами 118, 106 и 106
Найти высоту треугольника со сторонами 130, 77 и 54
Найти высоту треугольника со сторонами 104, 67 и 56