Рассчитать высоту треугольника со сторонами 128, 124 и 99
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 124 + 99}{2}} \normalsize = 175.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175.5(175.5-128)(175.5-124)(175.5-99)}}{124}\normalsize = 92.4332041}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175.5(175.5-128)(175.5-124)(175.5-99)}}{128}\normalsize = 89.5446665}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175.5(175.5-128)(175.5-124)(175.5-99)}}{99}\normalsize = 115.774922}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 124 и 99 равна 92.4332041
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 124 и 99 равна 89.5446665
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 124 и 99 равна 115.774922
Ссылка на результат
?n1=128&n2=124&n3=99
Найти высоту треугольника со сторонами 62, 61 и 51
Найти высоту треугольника со сторонами 75, 66 и 38
Найти высоту треугольника со сторонами 51, 49 и 49
Найти высоту треугольника со сторонами 122, 113 и 53
Найти высоту треугольника со сторонами 93, 66 и 32
Найти высоту треугольника со сторонами 137, 124 и 46
Найти высоту треугольника со сторонами 75, 66 и 38
Найти высоту треугольника со сторонами 51, 49 и 49
Найти высоту треугольника со сторонами 122, 113 и 53
Найти высоту треугольника со сторонами 93, 66 и 32
Найти высоту треугольника со сторонами 137, 124 и 46