Рассчитать высоту треугольника со сторонами 128, 126 и 106
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 126 + 106}{2}} \normalsize = 180}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{180(180-128)(180-126)(180-106)}}{126}\normalsize = 97.075607}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{180(180-128)(180-126)(180-106)}}{128}\normalsize = 95.5588006}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{180(180-128)(180-126)(180-106)}}{106}\normalsize = 115.391759}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 126 и 106 равна 97.075607
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 126 и 106 равна 95.5588006
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 126 и 106 равна 115.391759
Ссылка на результат
?n1=128&n2=126&n3=106
Найти высоту треугольника со сторонами 122, 108 и 19
Найти высоту треугольника со сторонами 122, 113 и 111
Найти высоту треугольника со сторонами 148, 136 и 38
Найти высоту треугольника со сторонами 125, 124 и 37
Найти высоту треугольника со сторонами 109, 107 и 104
Найти высоту треугольника со сторонами 56, 52 и 51
Найти высоту треугольника со сторонами 122, 113 и 111
Найти высоту треугольника со сторонами 148, 136 и 38
Найти высоту треугольника со сторонами 125, 124 и 37
Найти высоту треугольника со сторонами 109, 107 и 104
Найти высоту треугольника со сторонами 56, 52 и 51