Рассчитать высоту треугольника со сторонами 128, 85 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 85 + 65}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-128)(139-85)(139-65)}}{85}\normalsize = 58.1604225}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-128)(139-85)(139-65)}}{128}\normalsize = 38.6221555}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-128)(139-85)(139-65)}}{65}\normalsize = 76.0559371}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 85 и 65 равна 58.1604225
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 85 и 65 равна 38.6221555
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 85 и 65 равна 76.0559371
Ссылка на результат
?n1=128&n2=85&n3=65
Найти высоту треугольника со сторонами 141, 140 и 4
Найти высоту треугольника со сторонами 51, 48 и 35
Найти высоту треугольника со сторонами 88, 64 и 33
Найти высоту треугольника со сторонами 125, 103 и 41
Найти высоту треугольника со сторонами 61, 58 и 7
Найти высоту треугольника со сторонами 115, 114 и 92
Найти высоту треугольника со сторонами 51, 48 и 35
Найти высоту треугольника со сторонами 88, 64 и 33
Найти высоту треугольника со сторонами 125, 103 и 41
Найти высоту треугольника со сторонами 61, 58 и 7
Найти высоту треугольника со сторонами 115, 114 и 92