Рассчитать высоту треугольника со сторонами 128, 86 и 51

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 86 + 51}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-128)(132.5-86)(132.5-51)}}{86}\normalsize = 34.9583577}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-128)(132.5-86)(132.5-51)}}{128}\normalsize = 23.4876465}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-128)(132.5-86)(132.5-51)}}{51}\normalsize = 58.9493874}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 86 и 51 равна 34.9583577
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 86 и 51 равна 23.4876465
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 86 и 51 равна 58.9493874
Ссылка на результат
?n1=128&n2=86&n3=51