Рассчитать высоту треугольника со сторонами 128, 93 и 40

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 93 + 40}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-128)(130.5-93)(130.5-40)}}{93}\normalsize = 22.6288368}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-128)(130.5-93)(130.5-40)}}{128}\normalsize = 16.4412643}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-128)(130.5-93)(130.5-40)}}{40}\normalsize = 52.6120456}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 93 и 40 равна 22.6288368
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 93 и 40 равна 16.4412643
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 93 и 40 равна 52.6120456
Ссылка на результат
?n1=128&n2=93&n3=40