Рассчитать высоту треугольника со сторонами 128, 97 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 97 + 36}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-128)(130.5-97)(130.5-36)}}{97}\normalsize = 20.9542359}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-128)(130.5-97)(130.5-36)}}{128}\normalsize = 15.8793819}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-128)(130.5-97)(130.5-36)}}{36}\normalsize = 56.4600246}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 97 и 36 равна 20.9542359
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 97 и 36 равна 15.8793819
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 97 и 36 равна 56.4600246
Ссылка на результат
?n1=128&n2=97&n3=36
Найти высоту треугольника со сторонами 73, 55 и 40
Найти высоту треугольника со сторонами 65, 64 и 43
Найти высоту треугольника со сторонами 90, 78 и 39
Найти высоту треугольника со сторонами 109, 72 и 69
Найти высоту треугольника со сторонами 115, 76 и 45
Найти высоту треугольника со сторонами 83, 68 и 41
Найти высоту треугольника со сторонами 65, 64 и 43
Найти высоту треугольника со сторонами 90, 78 и 39
Найти высоту треугольника со сторонами 109, 72 и 69
Найти высоту треугольника со сторонами 115, 76 и 45
Найти высоту треугольника со сторонами 83, 68 и 41