Рассчитать высоту треугольника со сторонами 128, 97 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 97 + 89}{2}} \normalsize = 157}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157(157-128)(157-97)(157-89)}}{97}\normalsize = 88.8663143}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157(157-128)(157-97)(157-89)}}{128}\normalsize = 67.3440038}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157(157-128)(157-97)(157-89)}}{89}\normalsize = 96.8542976}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 97 и 89 равна 88.8663143
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 97 и 89 равна 67.3440038
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 97 и 89 равна 96.8542976
Ссылка на результат
?n1=128&n2=97&n3=89
Найти высоту треугольника со сторонами 76, 71 и 58
Найти высоту треугольника со сторонами 111, 93 и 84
Найти высоту треугольника со сторонами 92, 61 и 39
Найти высоту треугольника со сторонами 85, 78 и 30
Найти высоту треугольника со сторонами 130, 113 и 99
Найти высоту треугольника со сторонами 70, 67 и 44
Найти высоту треугольника со сторонами 111, 93 и 84
Найти высоту треугольника со сторонами 92, 61 и 39
Найти высоту треугольника со сторонами 85, 78 и 30
Найти высоту треугольника со сторонами 130, 113 и 99
Найти высоту треугольника со сторонами 70, 67 и 44