Рассчитать высоту треугольника со сторонами 129, 100 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 100 + 36}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-129)(132.5-100)(132.5-36)}}{100}\normalsize = 24.1199995}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-129)(132.5-100)(132.5-36)}}{129}\normalsize = 18.697674}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-129)(132.5-100)(132.5-36)}}{36}\normalsize = 66.9999986}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 100 и 36 равна 24.1199995
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 100 и 36 равна 18.697674
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 100 и 36 равна 66.9999986
Ссылка на результат
?n1=129&n2=100&n3=36
Найти высоту треугольника со сторонами 117, 91 и 39
Найти высоту треугольника со сторонами 146, 125 и 72
Найти высоту треугольника со сторонами 45, 41 и 13
Найти высоту треугольника со сторонами 101, 83 и 52
Найти высоту треугольника со сторонами 131, 122 и 60
Найти высоту треугольника со сторонами 45, 42 и 24
Найти высоту треугольника со сторонами 146, 125 и 72
Найти высоту треугольника со сторонами 45, 41 и 13
Найти высоту треугольника со сторонами 101, 83 и 52
Найти высоту треугольника со сторонами 131, 122 и 60
Найти высоту треугольника со сторонами 45, 42 и 24