Рассчитать высоту треугольника со сторонами 129, 101 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 101 + 42}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-129)(136-101)(136-42)}}{101}\normalsize = 35.0449178}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-129)(136-101)(136-42)}}{129}\normalsize = 27.4382689}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-129)(136-101)(136-42)}}{42}\normalsize = 84.2746832}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 101 и 42 равна 35.0449178
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 101 и 42 равна 27.4382689
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 101 и 42 равна 84.2746832
Ссылка на результат
?n1=129&n2=101&n3=42
Найти высоту треугольника со сторонами 122, 78 и 57
Найти высоту треугольника со сторонами 125, 90 и 90
Найти высоту треугольника со сторонами 129, 121 и 107
Найти высоту треугольника со сторонами 149, 90 и 72
Найти высоту треугольника со сторонами 26, 16 и 13
Найти высоту треугольника со сторонами 122, 121 и 3
Найти высоту треугольника со сторонами 125, 90 и 90
Найти высоту треугольника со сторонами 129, 121 и 107
Найти высоту треугольника со сторонами 149, 90 и 72
Найти высоту треугольника со сторонами 26, 16 и 13
Найти высоту треугольника со сторонами 122, 121 и 3