Рассчитать высоту треугольника со сторонами 129, 101 и 87
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 101 + 87}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-129)(158.5-101)(158.5-87)}}{101}\normalsize = 86.8202849}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-129)(158.5-101)(158.5-87)}}{129}\normalsize = 67.9755719}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-129)(158.5-101)(158.5-87)}}{87}\normalsize = 100.791365}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 101 и 87 равна 86.8202849
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 101 и 87 равна 67.9755719
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 101 и 87 равна 100.791365
Ссылка на результат
?n1=129&n2=101&n3=87
Найти высоту треугольника со сторонами 147, 124 и 36
Найти высоту треугольника со сторонами 116, 89 и 56
Найти высоту треугольника со сторонами 36, 31 и 24
Найти высоту треугольника со сторонами 98, 94 и 72
Найти высоту треугольника со сторонами 143, 95 и 70
Найти высоту треугольника со сторонами 139, 109 и 92
Найти высоту треугольника со сторонами 116, 89 и 56
Найти высоту треугольника со сторонами 36, 31 и 24
Найти высоту треугольника со сторонами 98, 94 и 72
Найти высоту треугольника со сторонами 143, 95 и 70
Найти высоту треугольника со сторонами 139, 109 и 92