Рассчитать высоту треугольника со сторонами 129, 105 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 105 + 44}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-129)(139-105)(139-44)}}{105}\normalsize = 40.3598328}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-129)(139-105)(139-44)}}{129}\normalsize = 32.8510267}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-129)(139-105)(139-44)}}{44}\normalsize = 96.3132372}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 105 и 44 равна 40.3598328
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 105 и 44 равна 32.8510267
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 105 и 44 равна 96.3132372
Ссылка на результат
?n1=129&n2=105&n3=44
Найти высоту треугольника со сторонами 72, 49 и 39
Найти высоту треугольника со сторонами 119, 104 и 49
Найти высоту треугольника со сторонами 102, 100 и 53
Найти высоту треугольника со сторонами 148, 98 и 98
Найти высоту треугольника со сторонами 130, 96 и 69
Найти высоту треугольника со сторонами 141, 117 и 88
Найти высоту треугольника со сторонами 119, 104 и 49
Найти высоту треугольника со сторонами 102, 100 и 53
Найти высоту треугольника со сторонами 148, 98 и 98
Найти высоту треугольника со сторонами 130, 96 и 69
Найти высоту треугольника со сторонами 141, 117 и 88