Рассчитать высоту треугольника со сторонами 129, 107 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 107 + 37}{2}} \normalsize = 136.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136.5(136.5-129)(136.5-107)(136.5-37)}}{107}\normalsize = 32.4015453}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136.5(136.5-129)(136.5-107)(136.5-37)}}{129}\normalsize = 26.8757004}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136.5(136.5-129)(136.5-107)(136.5-37)}}{37}\normalsize = 93.7017663}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 107 и 37 равна 32.4015453
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 107 и 37 равна 26.8757004
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 107 и 37 равна 93.7017663
Ссылка на результат
?n1=129&n2=107&n3=37
Найти высоту треугольника со сторонами 91, 53 и 49
Найти высоту треугольника со сторонами 90, 84 и 72
Найти высоту треугольника со сторонами 115, 65 и 59
Найти высоту треугольника со сторонами 123, 123 и 97
Найти высоту треугольника со сторонами 78, 61 и 59
Найти высоту треугольника со сторонами 104, 95 и 83
Найти высоту треугольника со сторонами 90, 84 и 72
Найти высоту треугольника со сторонами 115, 65 и 59
Найти высоту треугольника со сторонами 123, 123 и 97
Найти высоту треугольника со сторонами 78, 61 и 59
Найти высоту треугольника со сторонами 104, 95 и 83