Рассчитать высоту треугольника со сторонами 129, 110 и 22

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 110 + 22}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-129)(130.5-110)(130.5-22)}}{110}\normalsize = 11.9972027}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-129)(130.5-110)(130.5-22)}}{129}\normalsize = 10.2301728}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-129)(130.5-110)(130.5-22)}}{22}\normalsize = 59.9860133}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 110 и 22 равна 11.9972027
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 110 и 22 равна 10.2301728
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 110 и 22 равна 59.9860133
Ссылка на результат
?n1=129&n2=110&n3=22