Рассчитать высоту треугольника со сторонами 129, 116 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 116 + 37}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-129)(141-116)(141-37)}}{116}\normalsize = 36.1625344}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-129)(141-116)(141-37)}}{129}\normalsize = 32.518248}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-129)(141-116)(141-37)}}{37}\normalsize = 113.374432}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 116 и 37 равна 36.1625344
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 116 и 37 равна 32.518248
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 116 и 37 равна 113.374432
Ссылка на результат
?n1=129&n2=116&n3=37
Найти высоту треугольника со сторонами 113, 95 и 81
Найти высоту треугольника со сторонами 87, 80 и 21
Найти высоту треугольника со сторонами 147, 98 и 75
Найти высоту треугольника со сторонами 129, 114 и 39
Найти высоту треугольника со сторонами 148, 92 и 66
Найти высоту треугольника со сторонами 100, 92 и 44
Найти высоту треугольника со сторонами 87, 80 и 21
Найти высоту треугольника со сторонами 147, 98 и 75
Найти высоту треугольника со сторонами 129, 114 и 39
Найти высоту треугольника со сторонами 148, 92 и 66
Найти высоту треугольника со сторонами 100, 92 и 44