Рассчитать высоту треугольника со сторонами 129, 116 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 116 + 49}{2}} \normalsize = 147}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147(147-129)(147-116)(147-49)}}{116}\normalsize = 48.8833332}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147(147-129)(147-116)(147-49)}}{129}\normalsize = 43.9571058}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147(147-129)(147-116)(147-49)}}{49}\normalsize = 115.723809}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 116 и 49 равна 48.8833332
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 116 и 49 равна 43.9571058
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 116 и 49 равна 115.723809
Ссылка на результат
?n1=129&n2=116&n3=49
Найти высоту треугольника со сторонами 109, 99 и 70
Найти высоту треугольника со сторонами 72, 65 и 54
Найти высоту треугольника со сторонами 111, 90 и 49
Найти высоту треугольника со сторонами 144, 113 и 49
Найти высоту треугольника со сторонами 101, 79 и 76
Найти высоту треугольника со сторонами 125, 108 и 103
Найти высоту треугольника со сторонами 72, 65 и 54
Найти высоту треугольника со сторонами 111, 90 и 49
Найти высоту треугольника со сторонами 144, 113 и 49
Найти высоту треугольника со сторонами 101, 79 и 76
Найти высоту треугольника со сторонами 125, 108 и 103