Рассчитать высоту треугольника со сторонами 129, 117 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 117 + 13}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-129)(129.5-117)(129.5-13)}}{117}\normalsize = 5.24906547}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-129)(129.5-117)(129.5-13)}}{129}\normalsize = 4.76078031}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-129)(129.5-117)(129.5-13)}}{13}\normalsize = 47.2415892}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 117 и 13 равна 5.24906547
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 117 и 13 равна 4.76078031
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 117 и 13 равна 47.2415892
Ссылка на результат
?n1=129&n2=117&n3=13
Найти высоту треугольника со сторонами 64, 39 и 38
Найти высоту треугольника со сторонами 57, 48 и 11
Найти высоту треугольника со сторонами 89, 66 и 42
Найти высоту треугольника со сторонами 126, 116 и 49
Найти высоту треугольника со сторонами 101, 68 и 36
Найти высоту треугольника со сторонами 113, 71 и 66
Найти высоту треугольника со сторонами 57, 48 и 11
Найти высоту треугольника со сторонами 89, 66 и 42
Найти высоту треугольника со сторонами 126, 116 и 49
Найти высоту треугольника со сторонами 101, 68 и 36
Найти высоту треугольника со сторонами 113, 71 и 66