Рассчитать высоту треугольника со сторонами 129, 119 и 51

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 119 + 51}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-129)(149.5-119)(149.5-51)}}{119}\normalsize = 50.9974659}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-129)(149.5-119)(149.5-51)}}{129}\normalsize = 47.0441739}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-129)(149.5-119)(149.5-51)}}{51}\normalsize = 118.994087}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 119 и 51 равна 50.9974659
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 119 и 51 равна 47.0441739
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 119 и 51 равна 118.994087
Ссылка на результат
?n1=129&n2=119&n3=51