Рассчитать высоту треугольника со сторонами 129, 120 и 90

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 120 + 90}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-129)(169.5-120)(169.5-90)}}{120}\normalsize = 86.6258036}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-129)(169.5-120)(169.5-90)}}{129}\normalsize = 80.5821429}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-129)(169.5-120)(169.5-90)}}{90}\normalsize = 115.501071}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 120 и 90 равна 86.6258036
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 120 и 90 равна 80.5821429
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 120 и 90 равна 115.501071
Ссылка на результат
?n1=129&n2=120&n3=90