Рассчитать высоту треугольника со сторонами 129, 121 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 121 + 50}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-129)(150-121)(150-50)}}{121}\normalsize = 49.9572934}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-129)(150-121)(150-50)}}{129}\normalsize = 46.8591667}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-129)(150-121)(150-50)}}{50}\normalsize = 120.89665}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 121 и 50 равна 49.9572934
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 121 и 50 равна 46.8591667
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 121 и 50 равна 120.89665
Ссылка на результат
?n1=129&n2=121&n3=50
Найти высоту треугольника со сторонами 124, 97 и 54
Найти высоту треугольника со сторонами 148, 126 и 27
Найти высоту треугольника со сторонами 135, 99 и 90
Найти высоту треугольника со сторонами 129, 123 и 20
Найти высоту треугольника со сторонами 136, 118 и 115
Найти высоту треугольника со сторонами 131, 122 и 28
Найти высоту треугольника со сторонами 148, 126 и 27
Найти высоту треугольника со сторонами 135, 99 и 90
Найти высоту треугольника со сторонами 129, 123 и 20
Найти высоту треугольника со сторонами 136, 118 и 115
Найти высоту треугольника со сторонами 131, 122 и 28