Рассчитать высоту треугольника со сторонами 129, 124 и 6

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 124 + 6}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-129)(129.5-124)(129.5-6)}}{124}\normalsize = 3.38254062}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-129)(129.5-124)(129.5-6)}}{129}\normalsize = 3.25143439}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-129)(129.5-124)(129.5-6)}}{6}\normalsize = 69.9058394}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 124 и 6 равна 3.38254062
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 124 и 6 равна 3.25143439
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 124 и 6 равна 69.9058394
Ссылка на результат
?n1=129&n2=124&n3=6