Рассчитать высоту треугольника со сторонами 129, 124 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 124 + 93}{2}} \normalsize = 173}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173(173-129)(173-124)(173-93)}}{124}\normalsize = 88.1050362}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173(173-129)(173-124)(173-93)}}{129}\normalsize = 84.6901123}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173(173-129)(173-124)(173-93)}}{93}\normalsize = 117.473382}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 124 и 93 равна 88.1050362
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 124 и 93 равна 84.6901123
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 124 и 93 равна 117.473382
Ссылка на результат
?n1=129&n2=124&n3=93
Найти высоту треугольника со сторонами 135, 117 и 32
Найти высоту треугольника со сторонами 119, 94 и 72
Найти высоту треугольника со сторонами 108, 107 и 57
Найти высоту треугольника со сторонами 140, 139 и 45
Найти высоту треугольника со сторонами 103, 97 и 43
Найти высоту треугольника со сторонами 137, 85 и 55
Найти высоту треугольника со сторонами 119, 94 и 72
Найти высоту треугольника со сторонами 108, 107 и 57
Найти высоту треугольника со сторонами 140, 139 и 45
Найти высоту треугольника со сторонами 103, 97 и 43
Найти высоту треугольника со сторонами 137, 85 и 55