Рассчитать высоту треугольника со сторонами 129, 126 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 126 + 9}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-129)(132-126)(132-9)}}{126}\normalsize = 8.5809471}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-129)(132-126)(132-9)}}{129}\normalsize = 8.38139019}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-129)(132-126)(132-9)}}{9}\normalsize = 120.133259}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 126 и 9 равна 8.5809471
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 126 и 9 равна 8.38139019
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 126 и 9 равна 120.133259
Ссылка на результат
?n1=129&n2=126&n3=9
Найти высоту треугольника со сторонами 42, 41 и 22
Найти высоту треугольника со сторонами 60, 40 и 28
Найти высоту треугольника со сторонами 130, 92 и 68
Найти высоту треугольника со сторонами 109, 66 и 57
Найти высоту треугольника со сторонами 121, 91 и 45
Найти высоту треугольника со сторонами 141, 118 и 51
Найти высоту треугольника со сторонами 60, 40 и 28
Найти высоту треугольника со сторонами 130, 92 и 68
Найти высоту треугольника со сторонами 109, 66 и 57
Найти высоту треугольника со сторонами 121, 91 и 45
Найти высоту треугольника со сторонами 141, 118 и 51