Рассчитать высоту треугольника со сторонами 129, 127 и 88
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 127 + 88}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-129)(172-127)(172-88)}}{127}\normalsize = 83.2665606}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-129)(172-127)(172-88)}}{129}\normalsize = 81.9756061}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-129)(172-127)(172-88)}}{88}\normalsize = 120.168786}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 127 и 88 равна 83.2665606
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 127 и 88 равна 81.9756061
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 127 и 88 равна 120.168786
Ссылка на результат
?n1=129&n2=127&n3=88
Найти высоту треугольника со сторонами 94, 57 и 47
Найти высоту треугольника со сторонами 146, 90 и 73
Найти высоту треугольника со сторонами 147, 130 и 124
Найти высоту треугольника со сторонами 150, 116 и 68
Найти высоту треугольника со сторонами 147, 127 и 30
Найти высоту треугольника со сторонами 144, 103 и 50
Найти высоту треугольника со сторонами 146, 90 и 73
Найти высоту треугольника со сторонами 147, 130 и 124
Найти высоту треугольника со сторонами 150, 116 и 68
Найти высоту треугольника со сторонами 147, 127 и 30
Найти высоту треугольника со сторонами 144, 103 и 50