Рассчитать высоту треугольника со сторонами 129, 72 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 72 + 61}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-129)(131-72)(131-61)}}{72}\normalsize = 28.8950314}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-129)(131-72)(131-61)}}{129}\normalsize = 16.1274594}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-129)(131-72)(131-61)}}{61}\normalsize = 34.1056108}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 72 и 61 равна 28.8950314
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 72 и 61 равна 16.1274594
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 72 и 61 равна 34.1056108
Ссылка на результат
?n1=129&n2=72&n3=61
Найти высоту треугольника со сторонами 81, 60 и 35
Найти высоту треугольника со сторонами 149, 122 и 67
Найти высоту треугольника со сторонами 148, 133 и 49
Найти высоту треугольника со сторонами 72, 59 и 20
Найти высоту треугольника со сторонами 107, 99 и 70
Найти высоту треугольника со сторонами 100, 87 и 55
Найти высоту треугольника со сторонами 149, 122 и 67
Найти высоту треугольника со сторонами 148, 133 и 49
Найти высоту треугольника со сторонами 72, 59 и 20
Найти высоту треугольника со сторонами 107, 99 и 70
Найти высоту треугольника со сторонами 100, 87 и 55