Рассчитать высоту треугольника со сторонами 129, 84 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 84 + 78}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-129)(145.5-84)(145.5-78)}}{84}\normalsize = 75.1646471}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-129)(145.5-84)(145.5-78)}}{129}\normalsize = 48.9444214}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-129)(145.5-84)(145.5-78)}}{78}\normalsize = 80.946543}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 84 и 78 равна 75.1646471
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 84 и 78 равна 48.9444214
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 84 и 78 равна 80.946543
Ссылка на результат
?n1=129&n2=84&n3=78
Найти высоту треугольника со сторонами 124, 106 и 49
Найти высоту треугольника со сторонами 95, 75 и 44
Найти высоту треугольника со сторонами 40, 36 и 9
Найти высоту треугольника со сторонами 109, 100 и 25
Найти высоту треугольника со сторонами 102, 80 и 46
Найти высоту треугольника со сторонами 139, 123 и 114
Найти высоту треугольника со сторонами 95, 75 и 44
Найти высоту треугольника со сторонами 40, 36 и 9
Найти высоту треугольника со сторонами 109, 100 и 25
Найти высоту треугольника со сторонами 102, 80 и 46
Найти высоту треугольника со сторонами 139, 123 и 114