Рассчитать высоту треугольника со сторонами 129, 85 и 66

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 85 + 66}{2}} \normalsize = 140}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140(140-129)(140-85)(140-66)}}{85}\normalsize = 58.9072346}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140(140-129)(140-85)(140-66)}}{129}\normalsize = 38.8148445}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140(140-129)(140-85)(140-66)}}{66}\normalsize = 75.8653778}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 85 и 66 равна 58.9072346
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 85 и 66 равна 38.8148445
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 85 и 66 равна 75.8653778
Ссылка на результат
?n1=129&n2=85&n3=66