Рассчитать высоту треугольника со сторонами 129, 88 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 88 + 42}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-129)(129.5-88)(129.5-42)}}{88}\normalsize = 11.0203474}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-129)(129.5-88)(129.5-42)}}{129}\normalsize = 7.51775636}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-129)(129.5-88)(129.5-42)}}{42}\normalsize = 23.0902517}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 88 и 42 равна 11.0203474
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 88 и 42 равна 7.51775636
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 88 и 42 равна 23.0902517
Ссылка на результат
?n1=129&n2=88&n3=42
Найти высоту треугольника со сторонами 104, 98 и 29
Найти высоту треугольника со сторонами 141, 136 и 105
Найти высоту треугольника со сторонами 143, 139 и 85
Найти высоту треугольника со сторонами 104, 66 и 53
Найти высоту треугольника со сторонами 139, 113 и 69
Найти высоту треугольника со сторонами 129, 117 и 90
Найти высоту треугольника со сторонами 141, 136 и 105
Найти высоту треугольника со сторонами 143, 139 и 85
Найти высоту треугольника со сторонами 104, 66 и 53
Найти высоту треугольника со сторонами 139, 113 и 69
Найти высоту треугольника со сторонами 129, 117 и 90