Рассчитать высоту треугольника со сторонами 129, 90 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 90 + 55}{2}} \normalsize = 137}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137(137-129)(137-90)(137-55)}}{90}\normalsize = 45.6718516}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137(137-129)(137-90)(137-55)}}{129}\normalsize = 31.8640825}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137(137-129)(137-90)(137-55)}}{55}\normalsize = 74.7357571}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 90 и 55 равна 45.6718516
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 90 и 55 равна 31.8640825
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 90 и 55 равна 74.7357571
Ссылка на результат
?n1=129&n2=90&n3=55
Найти высоту треугольника со сторонами 122, 114 и 48
Найти высоту треугольника со сторонами 141, 123 и 80
Найти высоту треугольника со сторонами 93, 73 и 50
Найти высоту треугольника со сторонами 145, 118 и 114
Найти высоту треугольника со сторонами 135, 134 и 58
Найти высоту треугольника со сторонами 110, 102 и 31
Найти высоту треугольника со сторонами 141, 123 и 80
Найти высоту треугольника со сторонами 93, 73 и 50
Найти высоту треугольника со сторонами 145, 118 и 114
Найти высоту треугольника со сторонами 135, 134 и 58
Найти высоту треугольника со сторонами 110, 102 и 31