Рассчитать высоту треугольника со сторонами 129, 93 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 93 + 52}{2}} \normalsize = 137}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137(137-129)(137-93)(137-52)}}{93}\normalsize = 43.53997}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137(137-129)(137-93)(137-52)}}{129}\normalsize = 31.3892807}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137(137-129)(137-93)(137-52)}}{52}\normalsize = 77.8695617}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 93 и 52 равна 43.53997
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 93 и 52 равна 31.3892807
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 93 и 52 равна 77.8695617
Ссылка на результат
?n1=129&n2=93&n3=52
Найти высоту треугольника со сторонами 138, 117 и 81
Найти высоту треугольника со сторонами 139, 95 и 46
Найти высоту треугольника со сторонами 90, 55 и 49
Найти высоту треугольника со сторонами 133, 123 и 116
Найти высоту треугольника со сторонами 83, 81 и 40
Найти высоту треугольника со сторонами 71, 58 и 46
Найти высоту треугольника со сторонами 139, 95 и 46
Найти высоту треугольника со сторонами 90, 55 и 49
Найти высоту треугольника со сторонами 133, 123 и 116
Найти высоту треугольника со сторонами 83, 81 и 40
Найти высоту треугольника со сторонами 71, 58 и 46