Рассчитать высоту треугольника со сторонами 129, 93 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 93 + 66}{2}} \normalsize = 144}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144(144-129)(144-93)(144-66)}}{93}\normalsize = 63.0385641}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144(144-129)(144-93)(144-66)}}{129}\normalsize = 45.4464067}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144(144-129)(144-93)(144-66)}}{66}\normalsize = 88.8270676}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 93 и 66 равна 63.0385641
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 93 и 66 равна 45.4464067
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 93 и 66 равна 88.8270676
Ссылка на результат
?n1=129&n2=93&n3=66
Найти высоту треугольника со сторонами 101, 82 и 75
Найти высоту треугольника со сторонами 122, 121 и 16
Найти высоту треугольника со сторонами 113, 70 и 66
Найти высоту треугольника со сторонами 108, 98 и 47
Найти высоту треугольника со сторонами 75, 61 и 33
Найти высоту треугольника со сторонами 122, 107 и 29
Найти высоту треугольника со сторонами 122, 121 и 16
Найти высоту треугольника со сторонами 113, 70 и 66
Найти высоту треугольника со сторонами 108, 98 и 47
Найти высоту треугольника со сторонами 75, 61 и 33
Найти высоту треугольника со сторонами 122, 107 и 29