Рассчитать высоту треугольника со сторонами 129, 95 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 95 + 78}{2}} \normalsize = 151}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151(151-129)(151-95)(151-78)}}{95}\normalsize = 77.5821209}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151(151-129)(151-95)(151-78)}}{129}\normalsize = 57.13412}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151(151-129)(151-95)(151-78)}}{78}\normalsize = 94.4910447}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 95 и 78 равна 77.5821209
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 95 и 78 равна 57.13412
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 95 и 78 равна 94.4910447
Ссылка на результат
?n1=129&n2=95&n3=78
Найти высоту треугольника со сторонами 80, 75 и 56
Найти высоту треугольника со сторонами 124, 108 и 92
Найти высоту треугольника со сторонами 64, 37 и 33
Найти высоту треугольника со сторонами 136, 127 и 66
Найти высоту треугольника со сторонами 143, 129 и 64
Найти высоту треугольника со сторонами 86, 57 и 43
Найти высоту треугольника со сторонами 124, 108 и 92
Найти высоту треугольника со сторонами 64, 37 и 33
Найти высоту треугольника со сторонами 136, 127 и 66
Найти высоту треугольника со сторонами 143, 129 и 64
Найти высоту треугольника со сторонами 86, 57 и 43