Рассчитать высоту треугольника со сторонами 129, 96 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 96 + 55}{2}} \normalsize = 140}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140(140-129)(140-96)(140-55)}}{96}\normalsize = 49.9982639}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140(140-129)(140-96)(140-55)}}{129}\normalsize = 37.2080103}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140(140-129)(140-96)(140-55)}}{55}\normalsize = 87.2696969}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 96 и 55 равна 49.9982639
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 96 и 55 равна 37.2080103
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 96 и 55 равна 87.2696969
Ссылка на результат
?n1=129&n2=96&n3=55
Найти высоту треугольника со сторонами 129, 108 и 35
Найти высоту треугольника со сторонами 28, 28 и 23
Найти высоту треугольника со сторонами 49, 49 и 43
Найти высоту треугольника со сторонами 45, 39 и 21
Найти высоту треугольника со сторонами 114, 94 и 63
Найти высоту треугольника со сторонами 98, 81 и 31
Найти высоту треугольника со сторонами 28, 28 и 23
Найти высоту треугольника со сторонами 49, 49 и 43
Найти высоту треугольника со сторонами 45, 39 и 21
Найти высоту треугольника со сторонами 114, 94 и 63
Найти высоту треугольника со сторонами 98, 81 и 31