Рассчитать высоту треугольника со сторонами 130, 100 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 100 + 85}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-130)(157.5-100)(157.5-85)}}{100}\normalsize = 84.9844655}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-130)(157.5-100)(157.5-85)}}{130}\normalsize = 65.3726658}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-130)(157.5-100)(157.5-85)}}{85}\normalsize = 99.9817241}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 100 и 85 равна 84.9844655
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 100 и 85 равна 65.3726658
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 100 и 85 равна 99.9817241
Ссылка на результат
?n1=130&n2=100&n3=85
Найти высоту треугольника со сторонами 110, 105 и 79
Найти высоту треугольника со сторонами 112, 107 и 52
Найти высоту треугольника со сторонами 133, 99 и 52
Найти высоту треугольника со сторонами 123, 98 и 41
Найти высоту треугольника со сторонами 113, 102 и 19
Найти высоту треугольника со сторонами 136, 94 и 55
Найти высоту треугольника со сторонами 112, 107 и 52
Найти высоту треугольника со сторонами 133, 99 и 52
Найти высоту треугольника со сторонами 123, 98 и 41
Найти высоту треугольника со сторонами 113, 102 и 19
Найти высоту треугольника со сторонами 136, 94 и 55