Рассчитать высоту треугольника со сторонами 130, 101 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 101 + 30}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-130)(130.5-101)(130.5-30)}}{101}\normalsize = 8.70949389}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-130)(130.5-101)(130.5-30)}}{130}\normalsize = 6.76660679}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-130)(130.5-101)(130.5-30)}}{30}\normalsize = 29.3219628}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 101 и 30 равна 8.70949389
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 101 и 30 равна 6.76660679
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 101 и 30 равна 29.3219628
Ссылка на результат
?n1=130&n2=101&n3=30
Найти высоту треугольника со сторонами 142, 139 и 121
Найти высоту треугольника со сторонами 93, 83 и 82
Найти высоту треугольника со сторонами 57, 35 и 27
Найти высоту треугольника со сторонами 123, 94 и 89
Найти высоту треугольника со сторонами 114, 93 и 65
Найти высоту треугольника со сторонами 141, 139 и 56
Найти высоту треугольника со сторонами 93, 83 и 82
Найти высоту треугольника со сторонами 57, 35 и 27
Найти высоту треугольника со сторонами 123, 94 и 89
Найти высоту треугольника со сторонами 114, 93 и 65
Найти высоту треугольника со сторонами 141, 139 и 56