Рассчитать высоту треугольника со сторонами 130, 106 и 92
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 106 + 92}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-130)(164-106)(164-92)}}{106}\normalsize = 91.0470247}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-130)(164-106)(164-92)}}{130}\normalsize = 74.2383432}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-130)(164-106)(164-92)}}{92}\normalsize = 104.902007}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 106 и 92 равна 91.0470247
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 106 и 92 равна 74.2383432
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 106 и 92 равна 104.902007
Ссылка на результат
?n1=130&n2=106&n3=92
Найти высоту треугольника со сторонами 36, 32 и 24
Найти высоту треугольника со сторонами 107, 101 и 70
Найти высоту треугольника со сторонами 126, 91 и 53
Найти высоту треугольника со сторонами 144, 125 и 33
Найти высоту треугольника со сторонами 132, 114 и 55
Найти высоту треугольника со сторонами 131, 122 и 27
Найти высоту треугольника со сторонами 107, 101 и 70
Найти высоту треугольника со сторонами 126, 91 и 53
Найти высоту треугольника со сторонами 144, 125 и 33
Найти высоту треугольника со сторонами 132, 114 и 55
Найти высоту треугольника со сторонами 131, 122 и 27