Рассчитать высоту треугольника со сторонами 130, 108 и 102
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 108 + 102}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-130)(170-108)(170-102)}}{108}\normalsize = 99.1541732}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-130)(170-108)(170-102)}}{130}\normalsize = 82.3742362}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-130)(170-108)(170-102)}}{102}\normalsize = 104.986772}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 108 и 102 равна 99.1541732
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 108 и 102 равна 82.3742362
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 108 и 102 равна 104.986772
Ссылка на результат
?n1=130&n2=108&n3=102
Найти высоту треугольника со сторонами 114, 85 и 68
Найти высоту треугольника со сторонами 31, 26 и 11
Найти высоту треугольника со сторонами 96, 87 и 38
Найти высоту треугольника со сторонами 142, 101 и 93
Найти высоту треугольника со сторонами 72, 69 и 6
Найти высоту треугольника со сторонами 149, 133 и 86
Найти высоту треугольника со сторонами 31, 26 и 11
Найти высоту треугольника со сторонами 96, 87 и 38
Найти высоту треугольника со сторонами 142, 101 и 93
Найти высоту треугольника со сторонами 72, 69 и 6
Найти высоту треугольника со сторонами 149, 133 и 86