Рассчитать высоту треугольника со сторонами 130, 111 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 111 + 67}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-130)(154-111)(154-67)}}{111}\normalsize = 66.9987735}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-130)(154-111)(154-67)}}{130}\normalsize = 57.206645}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-130)(154-111)(154-67)}}{67}\normalsize = 110.997968}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 111 и 67 равна 66.9987735
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 111 и 67 равна 57.206645
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 111 и 67 равна 110.997968
Ссылка на результат
?n1=130&n2=111&n3=67
Найти высоту треугольника со сторонами 139, 103 и 96
Найти высоту треугольника со сторонами 118, 83 и 46
Найти высоту треугольника со сторонами 81, 78 и 14
Найти высоту треугольника со сторонами 119, 90 и 31
Найти высоту треугольника со сторонами 148, 126 и 75
Найти высоту треугольника со сторонами 78, 58 и 58
Найти высоту треугольника со сторонами 118, 83 и 46
Найти высоту треугольника со сторонами 81, 78 и 14
Найти высоту треугольника со сторонами 119, 90 и 31
Найти высоту треугольника со сторонами 148, 126 и 75
Найти высоту треугольника со сторонами 78, 58 и 58