Рассчитать высоту треугольника со сторонами 130, 117 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 117 + 59}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-130)(153-117)(153-59)}}{117}\normalsize = 58.9887162}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-130)(153-117)(153-59)}}{130}\normalsize = 53.0898446}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-130)(153-117)(153-59)}}{59}\normalsize = 116.977624}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 117 и 59 равна 58.9887162
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 117 и 59 равна 53.0898446
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 117 и 59 равна 116.977624
Ссылка на результат
?n1=130&n2=117&n3=59
Найти высоту треугольника со сторонами 83, 63 и 34
Найти высоту треугольника со сторонами 115, 104 и 54
Найти высоту треугольника со сторонами 112, 68 и 55
Найти высоту треугольника со сторонами 143, 127 и 126
Найти высоту треугольника со сторонами 127, 119 и 12
Найти высоту треугольника со сторонами 110, 84 и 68
Найти высоту треугольника со сторонами 115, 104 и 54
Найти высоту треугольника со сторонами 112, 68 и 55
Найти высоту треугольника со сторонами 143, 127 и 126
Найти высоту треугольника со сторонами 127, 119 и 12
Найти высоту треугольника со сторонами 110, 84 и 68