Рассчитать высоту треугольника со сторонами 130, 119 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 119 + 60}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-130)(154.5-119)(154.5-60)}}{119}\normalsize = 59.8908393}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-130)(154.5-119)(154.5-60)}}{130}\normalsize = 54.8231529}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-130)(154.5-119)(154.5-60)}}{60}\normalsize = 118.783498}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 119 и 60 равна 59.8908393
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 119 и 60 равна 54.8231529
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 119 и 60 равна 118.783498
Ссылка на результат
?n1=130&n2=119&n3=60
Найти высоту треугольника со сторонами 80, 73 и 41
Найти высоту треугольника со сторонами 149, 149 и 127
Найти высоту треугольника со сторонами 119, 74 и 51
Найти высоту треугольника со сторонами 129, 102 и 37
Найти высоту треугольника со сторонами 124, 124 и 22
Найти высоту треугольника со сторонами 122, 119 и 102
Найти высоту треугольника со сторонами 149, 149 и 127
Найти высоту треугольника со сторонами 119, 74 и 51
Найти высоту треугольника со сторонами 129, 102 и 37
Найти высоту треугольника со сторонами 124, 124 и 22
Найти высоту треугольника со сторонами 122, 119 и 102