Рассчитать высоту треугольника со сторонами 130, 122 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 122 + 63}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-130)(157.5-122)(157.5-63)}}{122}\normalsize = 62.4894744}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-130)(157.5-122)(157.5-63)}}{130}\normalsize = 58.6439683}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-130)(157.5-122)(157.5-63)}}{63}\normalsize = 121.011363}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 122 и 63 равна 62.4894744
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 122 и 63 равна 58.6439683
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 122 и 63 равна 121.011363
Ссылка на результат
?n1=130&n2=122&n3=63
Найти высоту треугольника со сторонами 149, 104 и 84
Найти высоту треугольника со сторонами 135, 118 и 39
Найти высоту треугольника со сторонами 134, 122 и 74
Найти высоту треугольника со сторонами 65, 58 и 56
Найти высоту треугольника со сторонами 87, 68 и 59
Найти высоту треугольника со сторонами 77, 76 и 14
Найти высоту треугольника со сторонами 135, 118 и 39
Найти высоту треугольника со сторонами 134, 122 и 74
Найти высоту треугольника со сторонами 65, 58 и 56
Найти высоту треугольника со сторонами 87, 68 и 59
Найти высоту треугольника со сторонами 77, 76 и 14