Рассчитать высоту треугольника со сторонами 130, 125 и 119
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 125 + 119}{2}} \normalsize = 187}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{187(187-130)(187-125)(187-119)}}{125}\normalsize = 107.257709}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{187(187-130)(187-125)(187-119)}}{130}\normalsize = 103.132412}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{187(187-130)(187-125)(187-119)}}{119}\normalsize = 112.66566}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 125 и 119 равна 107.257709
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 125 и 119 равна 103.132412
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 125 и 119 равна 112.66566
Ссылка на результат
?n1=130&n2=125&n3=119
Найти высоту треугольника со сторонами 128, 113 и 105
Найти высоту треугольника со сторонами 116, 105 и 27
Найти высоту треугольника со сторонами 44, 39 и 39
Найти высоту треугольника со сторонами 128, 99 и 83
Найти высоту треугольника со сторонами 96, 72 и 34
Найти высоту треугольника со сторонами 150, 110 и 69
Найти высоту треугольника со сторонами 116, 105 и 27
Найти высоту треугольника со сторонами 44, 39 и 39
Найти высоту треугольника со сторонами 128, 99 и 83
Найти высоту треугольника со сторонами 96, 72 и 34
Найти высоту треугольника со сторонами 150, 110 и 69