Рассчитать высоту треугольника со сторонами 130, 125 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 125 + 8}{2}} \normalsize = 131.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131.5(131.5-130)(131.5-125)(131.5-8)}}{125}\normalsize = 6.36676244}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131.5(131.5-130)(131.5-125)(131.5-8)}}{130}\normalsize = 6.12188696}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131.5(131.5-130)(131.5-125)(131.5-8)}}{8}\normalsize = 99.4806632}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 125 и 8 равна 6.36676244
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 125 и 8 равна 6.12188696
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 125 и 8 равна 99.4806632
Ссылка на результат
?n1=130&n2=125&n3=8
Найти высоту треугольника со сторонами 91, 91 и 78
Найти высоту треугольника со сторонами 114, 80 и 55
Найти высоту треугольника со сторонами 132, 129 и 111
Найти высоту треугольника со сторонами 139, 138 и 25
Найти высоту треугольника со сторонами 47, 46 и 24
Найти высоту треугольника со сторонами 81, 73 и 48
Найти высоту треугольника со сторонами 114, 80 и 55
Найти высоту треугольника со сторонами 132, 129 и 111
Найти высоту треугольника со сторонами 139, 138 и 25
Найти высоту треугольника со сторонами 47, 46 и 24
Найти высоту треугольника со сторонами 81, 73 и 48