Рассчитать высоту треугольника со сторонами 130, 126 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 126 + 56}{2}} \normalsize = 156}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156(156-130)(156-126)(156-56)}}{126}\normalsize = 55.3693023}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156(156-130)(156-126)(156-56)}}{130}\normalsize = 53.6656315}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156(156-130)(156-126)(156-56)}}{56}\normalsize = 124.58093}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 126 и 56 равна 55.3693023
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 126 и 56 равна 53.6656315
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 126 и 56 равна 124.58093
Ссылка на результат
?n1=130&n2=126&n3=56
Найти высоту треугольника со сторонами 138, 105 и 85
Найти высоту треугольника со сторонами 113, 69 и 50
Найти высоту треугольника со сторонами 121, 98 и 58
Найти высоту треугольника со сторонами 146, 130 и 63
Найти высоту треугольника со сторонами 123, 119 и 28
Найти высоту треугольника со сторонами 135, 125 и 42
Найти высоту треугольника со сторонами 113, 69 и 50
Найти высоту треугольника со сторонами 121, 98 и 58
Найти высоту треугольника со сторонами 146, 130 и 63
Найти высоту треугольника со сторонами 123, 119 и 28
Найти высоту треугольника со сторонами 135, 125 и 42