Рассчитать высоту треугольника со сторонами 130, 128 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 128 + 33}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-130)(145.5-128)(145.5-33)}}{128}\normalsize = 32.9240049}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-130)(145.5-128)(145.5-33)}}{130}\normalsize = 32.4174817}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-130)(145.5-128)(145.5-33)}}{33}\normalsize = 127.705231}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 128 и 33 равна 32.9240049
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 128 и 33 равна 32.4174817
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 128 и 33 равна 127.705231
Ссылка на результат
?n1=130&n2=128&n3=33
Найти высоту треугольника со сторонами 122, 86 и 42
Найти высоту треугольника со сторонами 107, 88 и 22
Найти высоту треугольника со сторонами 30, 30 и 26
Найти высоту треугольника со сторонами 146, 134 и 44
Найти высоту треугольника со сторонами 77, 72 и 32
Найти высоту треугольника со сторонами 129, 84 и 71
Найти высоту треугольника со сторонами 107, 88 и 22
Найти высоту треугольника со сторонами 30, 30 и 26
Найти высоту треугольника со сторонами 146, 134 и 44
Найти высоту треугольника со сторонами 77, 72 и 32
Найти высоту треугольника со сторонами 129, 84 и 71