Рассчитать высоту треугольника со сторонами 130, 83 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 83 + 75}{2}} \normalsize = 144}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144(144-130)(144-83)(144-75)}}{83}\normalsize = 70.1918405}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144(144-130)(144-83)(144-75)}}{130}\normalsize = 44.8147905}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144(144-130)(144-83)(144-75)}}{75}\normalsize = 77.6789701}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 83 и 75 равна 70.1918405
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 83 и 75 равна 44.8147905
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 83 и 75 равна 77.6789701
Ссылка на результат
?n1=130&n2=83&n3=75
Найти высоту треугольника со сторонами 130, 120 и 52
Найти высоту треугольника со сторонами 108, 107 и 92
Найти высоту треугольника со сторонами 134, 113 и 109
Найти высоту треугольника со сторонами 140, 116 и 107
Найти высоту треугольника со сторонами 86, 67 и 58
Найти высоту треугольника со сторонами 116, 116 и 100
Найти высоту треугольника со сторонами 108, 107 и 92
Найти высоту треугольника со сторонами 134, 113 и 109
Найти высоту треугольника со сторонами 140, 116 и 107
Найти высоту треугольника со сторонами 86, 67 и 58
Найти высоту треугольника со сторонами 116, 116 и 100