Рассчитать высоту треугольника со сторонами 130, 93 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 93 + 59}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-130)(141-93)(141-59)}}{93}\normalsize = 53.1349763}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-130)(141-93)(141-59)}}{130}\normalsize = 38.0119446}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-130)(141-93)(141-59)}}{59}\normalsize = 83.7551321}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 93 и 59 равна 53.1349763
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 93 и 59 равна 38.0119446
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 93 и 59 равна 83.7551321
Ссылка на результат
?n1=130&n2=93&n3=59
Найти высоту треугольника со сторонами 144, 118 и 52
Найти высоту треугольника со сторонами 124, 111 и 78
Найти высоту треугольника со сторонами 145, 138 и 107
Найти высоту треугольника со сторонами 87, 60 и 46
Найти высоту треугольника со сторонами 132, 116 и 98
Найти высоту треугольника со сторонами 91, 77 и 76
Найти высоту треугольника со сторонами 124, 111 и 78
Найти высоту треугольника со сторонами 145, 138 и 107
Найти высоту треугольника со сторонами 87, 60 и 46
Найти высоту треугольника со сторонами 132, 116 и 98
Найти высоту треугольника со сторонами 91, 77 и 76