Рассчитать высоту треугольника со сторонами 130, 94 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 94 + 84}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-130)(154-94)(154-84)}}{94}\normalsize = 83.8287072}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-130)(154-94)(154-84)}}{130}\normalsize = 60.6146037}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-130)(154-94)(154-84)}}{84}\normalsize = 93.8083152}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 94 и 84 равна 83.8287072
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 94 и 84 равна 60.6146037
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 94 и 84 равна 93.8083152
Ссылка на результат
?n1=130&n2=94&n3=84
Найти высоту треугольника со сторонами 79, 73 и 17
Найти высоту треугольника со сторонами 110, 85 и 77
Найти высоту треугольника со сторонами 146, 140 и 42
Найти высоту треугольника со сторонами 146, 98 и 65
Найти высоту треугольника со сторонами 105, 87 и 27
Найти высоту треугольника со сторонами 110, 97 и 69
Найти высоту треугольника со сторонами 110, 85 и 77
Найти высоту треугольника со сторонами 146, 140 и 42
Найти высоту треугольника со сторонами 146, 98 и 65
Найти высоту треугольника со сторонами 105, 87 и 27
Найти высоту треугольника со сторонами 110, 97 и 69