Рассчитать высоту треугольника со сторонами 130, 99 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 99 + 33}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-130)(131-99)(131-33)}}{99}\normalsize = 12.9484706}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-130)(131-99)(131-33)}}{130}\normalsize = 9.8607584}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-130)(131-99)(131-33)}}{33}\normalsize = 38.8454119}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 99 и 33 равна 12.9484706
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 99 и 33 равна 9.8607584
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 99 и 33 равна 38.8454119
Ссылка на результат
?n1=130&n2=99&n3=33
Найти высоту треугольника со сторонами 79, 49 и 45
Найти высоту треугольника со сторонами 143, 110 и 63
Найти высоту треугольника со сторонами 130, 107 и 33
Найти высоту треугольника со сторонами 88, 47 и 47
Найти высоту треугольника со сторонами 117, 72 и 50
Найти высоту треугольника со сторонами 143, 120 и 37
Найти высоту треугольника со сторонами 143, 110 и 63
Найти высоту треугольника со сторонами 130, 107 и 33
Найти высоту треугольника со сторонами 88, 47 и 47
Найти высоту треугольника со сторонами 117, 72 и 50
Найти высоту треугольника со сторонами 143, 120 и 37