Рассчитать высоту треугольника со сторонами 131, 100 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 100 + 54}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-131)(142.5-100)(142.5-54)}}{100}\normalsize = 49.6537952}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-131)(142.5-100)(142.5-54)}}{131}\normalsize = 37.9036604}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-131)(142.5-100)(142.5-54)}}{54}\normalsize = 91.9514725}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 100 и 54 равна 49.6537952
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 100 и 54 равна 37.9036604
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 100 и 54 равна 91.9514725
Ссылка на результат
?n1=131&n2=100&n3=54
Найти высоту треугольника со сторонами 105, 79 и 73
Найти высоту треугольника со сторонами 84, 76 и 74
Найти высоту треугольника со сторонами 135, 130 и 13
Найти высоту треугольника со сторонами 134, 110 и 91
Найти высоту треугольника со сторонами 90, 49 и 49
Найти высоту треугольника со сторонами 92, 89 и 83
Найти высоту треугольника со сторонами 84, 76 и 74
Найти высоту треугольника со сторонами 135, 130 и 13
Найти высоту треугольника со сторонами 134, 110 и 91
Найти высоту треугольника со сторонами 90, 49 и 49
Найти высоту треугольника со сторонами 92, 89 и 83